

### **Problem statement**

This project presents a **named entity recognition system** for the specific domain of **Vietnamese COVID-19 news articles**.

Simple deep learning model with input including:

- word embeddings
- part-of-speech tags
- manually extracted features

The system can identify 10 types of named entities with an unweighted average F score of about 90.41% on the test set (>3K sentences, >50K words, >11K entities).



# Word vs. syllable











### PART 01

## **APPROACH**

Data source

Neural network architecture

Input data engineering

### **Data**

COVID-19 Vietnamese named entity recognition dataset (Truong et al., 2021).

Includes 10 entity types: PATIENT\_ID, PERSON\_NAME, AGE, GENDER, OCCUPATION, LOCATION, ORGANIZATION, SYMPTOM&DISEASE, TRANSPORTATION, and DATE.

Includes 20 tags: B- and I- for each type & O tag.

Contains 10K sentences, >270K words, >35K entities.

Split into train/validation/test sets with ratio 5/2/3.

| Words      | NER tags   |
|------------|------------|
| cách_ly    | 0          |
| tại        | 0          |
| Bệnh_viện  | B-LOCATION |
| Bệnh       | I-LOCATION |
| Nhiệt_đới  | I-LOCATION |
| Trung_ương | I-LOCATION |

Sample from the dataset. "quarantine(d) at the National Hospital of Tropical Diseases".



### **Neural network**



### **Long Short Term Memory**

A type of Recurrent Neural Network capable of capturing long term dependencies in sequence data



### **Bidirectional LSTM**

Stacked LSTMs that are both connected to input layer to process data in forward and backward directions



#### **TimeDistributed**

Wrapper that helps apply a layer (in this case a Dense layer) to every slice of an input sequence to produce an output sequence



## **Neural network**



# Input data







#### 1. WORD EMBEDDINGS

Created a vocabulary list from all unique words Used fastText to build embedding matrix, row *i* contains a vector representation of the word with index *i* in the vocabulary list

#### 2. PART-OF-SPEECH TAGS

Used VnCoreNLP toolkit to obtain POS tags Turned each tag into a vector using one-hot encoding

#### 3. MANUALLY EXTRACTED FEATURES

Extracted from the words a number of features: isLower, isAllCap, isTitle, isNoun, etc.
Also features based on custom word lists (common last names, common jobs)



### PART 02

# **RESULTS**

Evaluation method

Results

Discussion of results

## **Evaluation method**

Input sentences are mostly padded up or cut off, so model predictions are stripped of all padded positions to leave only predicted labels of real words.

Evaluation metrics: precision, recall, F score.

Predictions are aggregated by entity types (e.g. B-DATE & I-DATE → DATE).



# **Results - Words**

| Models                                | Unweighted |        |        | Weighted  |        |        | Correct    |
|---------------------------------------|------------|--------|--------|-----------|--------|--------|------------|
|                                       | Precision  | Recall | F      | Precision | Recall | F      | boundaries |
| 300D word embeddings                  | 93.51%     | 85.19% | 88.79% | 95.62%    | 90.83% | 93.06% | 90.59%     |
| 300D word embeddings + POS            | 93.53%     | 87.10% | 89.94% | 95.50%    | 91.68% | 93.46% | 92.08%     |
| 300D word embeddings + POS + features | 93.42%     | 88.02% | 90.41% | 95.23%    | 92.24% | 93.64% | 92.34%     |
| 100D word embeddings                  | 91.74%     | 84.54% | 87.66% | 94.80%    | 90.43% | 92.46% | 90.34%     |
| 100D word embeddings + POS            | 91.29%     | 86.81% | 88.76% | 94.68%    | 91.08% | 92.78% | 91.27%     |
| 100D word embeddings + POS + features | 92.28%     | 87.15% | 89.46% | 94.66%    | 91.77% | 93.13% | 92.03%     |
| BiL-CNN-CRF                           |            |        | 87.5%  |           |        | 91%    |            |
| PhoBERT base                          |            |        | 92%    |           |        | 94.2%  |            |
| PhoBERT large                         |            |        | 93.1%  |           |        | 94.5%  |            |



**Results - Syllables** 

| Models                                | Unweighted |        |        | Weighted  |        |        | Correct    |
|---------------------------------------|------------|--------|--------|-----------|--------|--------|------------|
|                                       | Precision  | Recall | F      | Precision | Recall | F      | boundaries |
| 300D word embeddings                  | 93.07%     | 85.77% | 89%    | 95.08%    | 91.76% | 93.30% | 91.15%     |
| 300D word embeddings + POS            | 92.62%     | 86.91% | 89.54% | 95.12%    | 91.09% | 93.52% | 91.55%     |
| 300D word embeddings + POS + features | 93.95%     | 87.67% | 90.45% | 95.28%    | 92.27% | 93.67% | 92.30%     |
| 100D word embeddings                  | 92.29%     | 85.59% | 88.51% | 94.60%    | 91.22% | 92.79% | 90.41%     |
| 100D word embeddings + POS            | 91.59%     | 86.24% | 88.67% | 94.44%    | 91.34% | 92.81% | 90.84%     |
| 100D word embeddings + POS + features | 93.38%     | 86.63% | 89.65% | 94.81%    | 91.79% | 92.24% | 91.64%     |
| BiL-CNN-CRF                           |            |        | 85.8%  |           |        | 90.6%  |            |
| XLM-R base                            |            |        | 87.9%  |           |        | 92.5%  |            |
| XLM-R large                           |            |        | 91.1%  |           |        | 93.8%  |            |



### **Discussions**

#### **Discussion of results**

Higher-dimensional word embeddings perform better than low-dimensional word embeddings.

Adding POS tags & manual features improve overall F score by 1-2%, higher in specific entity types:

· JOB: 57% → 63%

NAME: 82% → 87% → 91%

Simple neural network model & features trained on specific domain gives results comparable to more complicated models (BiLSTM-CNN-CRF, fined tuned & pre-trained language models).

#### **Future work & extension**

Extend to bigram, trigram.

Downstream tasks: automatic contact tracing through news articles, relationship extraction.



## Selected references

Thinh Hung Truong, Mai Hoang Dao, and Dat Quoc Nguyen. 2021. **COVID-19 named entity recognition for Vietnamese**. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 2146–2153, Online. Association for Computational Linguistics.

Thai-Hoang Pham and Phuong Le-Hong. 2017. **The importance of automatic syntactic features in Vietnamese named entity recognition**. In Proceedings of the 31st Pacific Asia Conference on Language, Information and Computation, pages 97–103. The National University (Philippines).

Thai-Hoang Pham and Phuong Le-Hong. 2017. **End-to-end recurrent neural network models for Vietnamese named entity recognition: Word-level vs. character- level**. CoRR, abs/1705.04044.

Thanh Vu, Dat Quoc Nguyen, Dai Quoc Nguyen, Mark Dras, and Mark Johnson. 2018. **VnCoreNLP: A Vietnamese natural language processing toolkit**. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations, pages 56–60, New Orleans, Louisiana. Association for Computational Linguistics.



